skip to main content


Search for: All records

Creators/Authors contains: "Wright, Alexandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article is a Commentary onMaset al. (2024),241: 1021–1034.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Climate models predict more frequent, prolonged, and extreme droughts in the future. Therefore, drought experiments varying in amount and duration across a range of biogeographical scenarios provide a powerful tool for estimating how drought will affect future ecosystems. Past experimental work has been focused on the manipulation of meteorological drought: Rainout shelters are used to reduce precipitation inputs into the soil. This work has been instrumental in our ability to predict the expected effects of altered rainfall. But what about the nonrainfall components of drought? We review recent literature on the co-occurring and sometimes divergent impacts of atmospheric drying and meteorological drying. We discuss how manipulating meteorological drought or rainfall alone may not predict future changes in plant productivity, composition, or species interactions that result from climate change induced droughts. We make recommendations for how to improve these experiments using manipulations of relative humidity.

     
    more » « less
  3. Abstract Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs — designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [−4.1, −0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    Climate change alters mean global surface temperatures, precipitation regimes, and atmospheric moisture. Resultant drought affects the composition and diversity of terrestrial ecosystems worldwide. To date, there have been no assessments of the combined impacts of reduced precipitation and atmospheric drying on functional trait distributions of any species in an outdoor experiment. Here, we examined whether soil and atmospheric drought affected the functional traits of a focal grass species (Poa secunda) growing in monoculture and eight‐species grass communities in outdoor mesocosms. We focused on specific leaf area (SLA), leaf area, stomatal density, root:shoot ratio, and fine root:coarse root ratio responses. Leaf area and overall growth were reduced with soil drying. Root:shoot ratio only increased forP. secundagrowing in monoculture under combined atmospheric and soil drought. Plant energy allocation strategy (measured using principal components) differed whenP. secundawas grown in combined soil and atmospheric drought conditions compared with soil drought alone. Given a lack of outdoor manipulations of this kind, our results emphasize the importance of atmospheric drying on functional trait responses more broadly. We suggest that drought methods focused purely on soil water inputs may be imprecisely predicting drought effects on other terrestrial organisms as well (other plants, arthropods, and higher trophic levels).

     
    more » « less
  5. null (Ed.)
  6. Abstract

    After 25 years of biodiversity experiments, it is clear that higher biodiversity (B) plant communities are usually more productive and often have greater ecosystem functioning (EF) than lower diversity communities. However, the mechanisms underlying this positive biodiversityecosystem functioning (BEF) relationship are still poorly understood.

    The vast majority of past work in BEF research has focused on the roles of mathematically partitioned complementarity and selection effects. While these mathematical approaches have provided insights into underlying mechanisms, they have focused strongly on competition and resource partitioning.

    Importantly, mathematically partitioned complementarity effects include multiple facilitative mechanisms, including dilution of species‐specific pathogens, positive changes in soil nutrient cycling, associational defence and microclimate amelioration.

    Synthesis. This Special Feature takes an experimental and mechanistic approach to teasing out the facilitative mechanisms that underlie positive BEF relationships. As an example, we demonstrate diversity‐driven changes in microclimate amelioration. Articles in this Special Feature explore photoinhibition, experimental manipulations of microclimate, lidar examinations of plant canopy effects and higher‐order trophic interactions as facilitative mechanisms behind classic BEF processes. We emphasize the need for future BEF experiments to disentangle the facilitative mechanisms that are interlinked with niche complementarity to better understand the fundamental processes by which diversity regulates life on Earth.

     
    more » « less
  7. Abstract

    Drought occurrence is increasing due to anthropogenic climate change. Drought can negatively affect plants via reduced water below‐ground and increased evaporative demand or vapour pressure deficit (VPD) above‐ground. Past work has shown that plant diversity can ameliorate the negative effects of drought in plant communities, but these results are inconsistent between experimental and natural drought studies. Furthermore, while studies on the negative effects of reduced soil moisture on plant growth in drought experiments are abundant, the effects of predicted increases in atmospheric VPD have been neglected.

    We directly manipulated atmospheric relative humidity in a biodiversity and drought experiment at the California State University, Los Angeles (CA, USA) under three atmospheric conditions (ambient, dehumidified and humidified), two treatments of native perennial grass diversity (monoculture and eight species polyculture) and two soil drought treatments (control and drought). We assessed both polyculture plant community and individual species (Poa secunda) responses to atmospheric drought and soil drought.

    We found that soil drought only limits above‐ground biomass production when atmospheric conditions are also dry. We also found thatP. secundawas limited by increased competition in polyculture when ambient atmospheric conditions were humid but was facilitated by diversity when atmospheric conditions were dry.

    Synthesis. Higher diversity ecosystems may be capable of protecting individual species from the negative effects of drought (facilitation). Without careful experimental manipulation of atmospheric drought, this important mechanism will be missed.

     
    more » « less